TCCYFLAM

Tropical Carbon Cycle and weathering
Coupled Modelling of Spatial and in Situ data; Guyana and Brazilian shields
Geochemistry

Financement ANR 2005-2008 – coordination Y. Godderis
To estimate CO_2 consumption due to silicate weathering (brasilian and guyana shields)
Coupled biosphere/hydrology/geochemistry modelling
On going modelling works

Orinoco basin

LPJ/Witch model

Merge the hydrological model with the LPJ/Witch model

Negro basin

Daily hydrological model based on in situ and satellite data
Spatial resolution: 0.5°x0.5°

WITCH + LPJ

- **LPJ Dynamic Global Vegetation Model**
- **CRU monthly climatic data**
- **CO₂ consumption**
- **WITCH** (Goddéris et al., 2006)
- **ISRIC soil database**
- **Lithological map**
- **Soil mineralogy**
- **Soil CO₂**
- **BERNI interface**
- **Rain chemical composition**
- **PFT**
 - Productivity
 - Soil hydrology
LPJ + WITCH: grid element geometry

Standing vegetation

Kaolinite

0.5 m

PCO₂

Clays

1.0 m

PCO₂

Bedrock

5.0 m

Lithological map

ET

Water

Surficial runoff

Drainage

to the river
Orinoco watershed: lithological forcing (Amiotte-suchet et al., 2004)
Orinoco watershed: LPJ output

Layer 3 PCO$_2$ (present atmospheric level)
WITCH output : contribution des processus d'altération au flux de Ca2+ sur le bassin de l'Orénoque, en présence d'apatite sur le bouclier Guyanais
WITCH output : contribution des processus d'altération au flux de Ca2+ sur le bassin de l'Orénoque, en l'absence d'apatite sur le bouclier Guyanais.

Les zones de fortes contributions à l'est du bassin sont dues à la présence de basaltes.
Orinoco watershed: Witch output

Ca$^{2+}$ **concentration in drainage waters (micromol/l)**

- **Apure watershed**: 400 micromol/l (Saunders and Lewis, 1989)

0.001 % CaCO$_3$ in shales

- **Basalts**
- **Shield rocks**
Vérification du modèle
Concentrations en Ca2+ calculées sur le bouclier Guyanais en accord avec les données de Edmond et al. (1995) en l’absence d’apatite (6 à 10 µmol/l)
Mais des concentrations observées plus élevées (65 à 90 µmol/l, Gaillardet et al., 1999; HYBAM data)

Bonne simulation de l'altération sur la partie sud du bassin. Par contre pas de reproduction des concentrations à Ciudad Bolivar également alimenté par l'altération provenant des sédiments de la partie nord. Probable présence de formations carbonatées non prises en compte dans la lithologie de Suchet et al., 2004
Orinoco watershed: Witch output: Guyana shield results

Sensitivity to apatite abundance in bedrock

Data Edmond et al, 1995

Best fit if 0.005 % of apatite available for dissolution in bedrock