Optical classification in contrasted coastal waters for monitoring water masses and improving the assessment of ocean color products

Vantrepotte V., Loisel H., Mériaux X., and Dessailly D.

LOG, CNRS-UMR 8187, 32 av. Foch, 62930 Wimereux, France.
Ocean color applications in coastal waters

Inversion algorithms (empirical or semi-analytical)

Satellite information (reflectance) -> Biogeochemical parameters

General relationships are not valid in the coastal ocean

- High biogeochemical and optical complexity of coastal ecosystems
- Large dispersion around general relationships
1rst Approach: Regional inversion algorithms

Advantage:
Convenient to develop

Inconvenients:
- Depends strongly on the data set used
- Might be inadequate even for a define area and season due to the various high frequency processes occurring in coastal waters

![Graph showing Chl.a vs max(Rrs443,490,510)/Rrs555](graph1.png)

![Graph showing Chla in-situ vs Chla computed from 3 algorithms](graph2.png)
2nd approach: Classification-based algorithms

Explicitly takes into account the optical characteristics of each pixel within the development of the bio-optical algorithms

In practice:

1) Determine the main patterns of optical variability (reflectance spectra classes)
2) Develop Class specific bio-optical algorithms
3) Identify the optical characteristics (classes) of each pixel
4) Apply Class-specific algorithm (empirical or semi-analytical)

Advantage:

Independent of the location/period
→ More « universal » approach

Requirements:

➢ Cover the diversity of the spectra gathered from satellite measurements
➢ Associate the RS spectra to the proper in situ optical class
➢ Derive relevant bio-optical algorithms
Data set

\[N_{\text{tot}} = 167 \]

French Guiana

North Sea (MUMM, Belcolour)

Optical (Rrs, IOPs: absorption and backscattering) and biogeochemical (Chla, SPM, POC...) data collected in different coastal waters encompassing large biogeochemical and bio-optical variability, from bloom conditions to sediment-loaded waters:

- **Chla**: 0.06 - 41 mg.m\(^{-3}\)
- **SPM**: 0.1-120 mg.l\(^{-1}\)
- **\(a_{\text{CDOM}}(355)\)**: 0.019 - 3. m\(^{-1}\)
- **\(b_{bp}/b_p\)**: 0.002- 0.05
R_{rs} in situ variability: Hyperspectral Data

Ascendant hierarchical clustering (Ward’s algorithm) on normalised R_{rs} spectra

→ 4 classes (coherence with Lubac and Loisel, 2007)
→ Spectra from different time periods and locations
Spectral Classes Characteristics

Class 1:
- $b_{bp}/b_p = 0.014$
- $a_{phy} / a_p = 64\%$
- $a_{cdom}/a_{tot} = 53\%$

Mixed class

Class 2:
- $b_{bp}/b_p = 0.013$
- $a_{phy} / a_p = 86\%$
- $a_{cdom}/a_{tot} = 53\%$

Mixed class (more phytoplankton dominated)

Class 3:
- $b_{bp}/b_p = 0.019$
- $a_{phy} / a_p = 10\%$
- $a_{cdom}/a_{tot} = 0.1\%$

No CDOM and dominated by non-algal particles (sediments and detritus)

Class 4:
- $b_{bp}/b_p = 0.009$
- $a_{phy} / a_p = 97\%$
- $a_{cdom}/a_{tot} = 84\%$

Phytoplankton dominated and high Colored Dissolved Organic Matter
French Guiana

Classes Distribution

Turbid waters

10 Oct 2002

9 Oct 1999

Mean Spectra SeaWiFS

Novelty Detection technique
Application:

Does the class-based approach improve the SPM retrieval?

Water reflectance: $\rho_{w}(670)$
Performance of class-based algorithm for SPM retrieval

In situ data only

In situ data only
Classes RMS

Not Classified

<table>
<thead>
<tr>
<th>Classes</th>
<th>RMS Classif</th>
<th>RMS Not Classif</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>2,1</td>
<td>3,4</td>
</tr>
<tr>
<td>G2</td>
<td>0,6</td>
<td>1,5</td>
</tr>
<tr>
<td>G3</td>
<td>16,5</td>
<td>16,6</td>
</tr>
<tr>
<td>All data</td>
<td>8,2</td>
<td>8,7</td>
</tr>
<tr>
<td><10 mg.l⁻¹</td>
<td>1,6</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Application to MODIS Data, French Guiana

MODIS:
A global data set providing a 9-year time series of a consistent, well calibrated, ocean colour record.

Period:
June 2002 - November 2010
(102 monthly data)

Grid:
1x1 km

Product:
L2 (processing 2009.1, OBPG/NASA)

Improved detection between clouds and turbid waters (Nordkvist et al., 2009)
Strong trends (up to 6%/yr) in TSM concentration over the MODIS time period

→ Alternation between increasing and decreasing TSM areas

→ TSM variability reflects mudbanks migration over the French Guiana coastal domain
Mudbanks migration

Allison and Lee, 2004

Mudbank

2002

2010
Mud banks migration

A: back of the mud bank in 2002
B: front of the mud bank in 2010

Bank area \approx 225-300 km2

Mud bank migration rate \approx 2 to 3 km yr$^{-1}$ \rightarrow Gardel and Gratiot, 2005
Mud banks migration

Time series decomposition

Census X-11 procedure
Vantrepotte et al., 2011, GRL
Vantrepotte and Mélin, 2011, DSR

→ Abrupt shifts in TSM concentrations
→ Presence of low frequency processes inducing peak events in TSM
Classification of the R_{rs} data has allowed to identify 4 distinct classes characterised by different bio-optical environments.

The 4 in situ R_{rs} classes depict almost all the satellite identified turbid waters (SeaWiFS).

Benefits for improving inversion algorithms (i.e. SPM retrieval).

→ These results suggest that the establishment of class-specific AOPs, IOPs-BC relationships has a meaning.

→ Ocean color TSM estimates as a good proxy for monitoring mudbanks dynamics over the French Guiana coastal waters.
What next?

Optical classes global distribution

ANR GlobCoast
THANK YOU!

This work has been founded by the CNES TOSCA Coulcot project